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Abstract

Multidimensional scaling (MDS) is a classical approach to the problem of finding

underlying attributes or dimensions, which influence how subjects evaluate a given

set of objects or stimuli. This paper provides a brief introduction to MDS. Its basic

applications are outlined by several examples. For the interested reader a short

overview of recommended literature is appended. The purpose of this paper is to

facilitate the first contact with MDS to the non-statistician.
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Introduction

Multidimensional scaling (MDS) has become more and more popular as a technique

for both multivariate and exploratory data analysis. MDS is a set of data analysis

methods, which allow one to infer the dimensions of the perceptual space of subjects.

The raw data entering into an MDS analysis are typically a measure of the global

similarity or dissimilarity of the stimuli or objects under investigation. The primary

outcome of an MDS analysis is a spatial configuration, in which the objects are

represented as points. The points in this spatial representation are arranged in such

a way, that their distances correspond to the similarities of the objects: similar

object are represented by points that are close to each other, dissimilar objects by

points that are far apart.

This paper is to provide a first introduction to MDS by briefly discussing some

of the issues a researcher is confronted with when applying this method. This

introduction is based mainly on the textbooks of Borg & Groenen (1997), Hair,

Anderson, Tatham & Black (1998), and Cox & Cox (1994), which are also mentioned

in section 5 (MDS literature) of this paper.

The first section covers problems connected with data collection. An overview

of direct and indirect methods of deriving the so-called proximities is given. The

second section may be regarded as a theoretical outline of important MDS methods.

The algorithms of both classical and nonmetric MDS are sketched without going too

deep into the mathematical detail. Section three illustrates different types of MDS

analyses using an example from sound quality evaluation. Section four describes the

many degrees of freedom a researcher has when performing MDS, and provides some

guidelines for choosing the right options. Finally, in the last section, the interested

reader can find recommended MDS literature.
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1 Deriving proximities

The data for MDS analyses are called proximities. Proximities indicate the overall

similarity or dissimilarity of the objects under investigation. An MDS program looks

for a spatial configuration of the objects, so that the distances between the objects

match their proximities as closely as possible. Often the data are arranged in a

square matrix – the proximity matrix. There are two major groups of methods for

deriving proximities: direct, and indirect methods.

1.1 Direct methods

Subjects might either assign a numerical (dis)similarity value to each pair of ob-

jects, or provide a ranking of the pairs with respect to their (dis)similarity. Both

approaches are direct methods of collecting proximity data.

(Dis)Similarity ratings

Typically, in a rating task subjects are asked to express the dissimilarity of two

objects by a number. Often a 7- or a 9-point scale is used. In the case of a

dissimilarity scale, a low number indicates a strong similarity between two stimuli,

and a high number a strong dissimilarity. In order to obtain the ratings, all possible

pairs of objects have to be presented to the participant (a total number of n(n−1)/2,

where n is the number of objects). This assumes, however, that the dissimilarity

relation is symmetrical, and thus the order within each pair is of no relevance.

Many MDS programs can also handle asymmetric proximity data, where for example

object a is more similar to object b than b to a. Asymmetric proximities might for

example arise when collecting confusion data (see below). Investigating asymmetric

proximity relations, however, doubles the number of pairs to be presented.

The advantage of direct ratings is that the data are immediately ready for an

MDS analysis. Therefore, both an individual investigation of each participant, and

an aggregate analysis based on averages across the proximity matrices are possible.

A disadvantage of dissimilarity ratings is the rapidly growing number of paired

comparisons, as the number of objects increases.
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Sorting tasks

There are many ways of asking subjects for the order of the similarities. One option

is to write each object pair on a card and let the participant sort the cards from

the lowest similarity to the highest. Another method is to let the subject put cards

with pairs of low similarity into one pile, cards with pairs of higher similarity in the

next pile and so on. Afterwards, a numerical value of (dis)similarity is assigned to

each pile. Yet another approach is to write only one object on each card and ask

the participants to sort the cards with the most similar objects into piles. Counting

how many times two objects appear together in a pile, yields the similarity matrix.

The advantage of the sorting methods is that they are very intuitive for subjects,

but some of them do not allow for an individual analysis of the data.

1.2 Indirect methods

Indirect methods for proximity data do not require that a subject assigns a numer-

ical value to the elements of the proximity matrix directly. Rather, the proximity

matrix is derived from other measures, e. g. from confusion data or from correlation

matrices.

Confusion Data

Confusion data arise when the researcher records how often subjects mistake one

stimulus for another. Consider an experiment where the letters of the alphabet are

briefly presented via loudspeaker. The task of the subject is to recognize the letter.

From the data a proximity matrix can be derived: letters that are rarely confused

get a high dissimilarity value, letters that are often confused a low one.

An advantage of using confusion data is that the similarity of stimuli is judged

on a perceptual level without involving much cognitive processing. Thus, very basic

perceptual dimensions might be revealed using this technique. On the other hand,

confusion data are often asymmetric and do not allow for an individual analysis.

Most notably, there must be a good chance of confusing one object with the other,

which excludes perfectly discriminable stimuli from being investigated using this

method.
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crime no. 1 2 3 4 5 6 7

murder 1 1.00 0.52 0.34 0.81 0.28 0.06 0.11

rape 2 0.52 1.00 0.55 0.70 0.68 0.60 0.44

robbery 3 0.34 0.55 1.00 0.56 0.62 0.44 0.62

assault 4 0.81 0.70 0.56 1.00 0.52 0.32 0.33

burglary 5 0.28 0.68 0.62 0.52 1.00 0.80 0.70

larceny 6 0.06 0.60 0.44 0.32 0.80 1.00 0.55

auto theft 7 0.11 0.44 0.62 0.33 0.70 0.55 1.00

Table 1: Correlations of crime rates over 50 U. S. states.

Correlation matrices

Yet another application of MDS is to use it for visualizing correlational data. When

objects are measured on different scales and the measurements are correlated with

each other, a matrix of correlation coefficients evolves. Even with just a few objects,

such a matrix becomes complex, and it is hard to detect patterns of correlation. An

MDS solution plots the objects on a map, so that their correlational structure is

accessible by visual inspection.

Table 1 shows an example of a correlation matrix: it lists the correlation coef-

ficients between crime rates collected in the 50 U. S. states (cf. Borg & Groenen,

1997). From the data alone it is not easily seen which crime rates are related. The

MDS representation in Figure 1 simplifies the task a lot. The distances in the Figure

correspond to the correlation coefficients, so that a high correlation is represented

by a small distance, and vice versa. In addition to the graphical representation, the

MDS analysis provides an explanation of the correlations by interpreting the axes

of the MDS space: the x-axis might be interpreted as “person versus property”, the

y-axis as “hidden versus street”.

Applying MDS to correlational data might reveal the relations between the ob-

jects more vividly than merely reporting correlation coefficients. A drawback of

this method is that the proximities need to be constructed from additional mea-

surements. The other methods of deriving proximities do not require such measure-

ments. Thus, an MDS analysis is possible, even if scales, dimensions or attributes

of the stimuli under concern are unknown beforehand. In fact, it is the goal of the

analysis to derive such dimensions.
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Figure 1: A two-dimensional MDS representation of the correlations

in Table 1 (cf. Borg & Groenen, 1997).

Both direct and indirect methods of deriving proximity data yield the proximity

matrix, which serves as an input for MDS programs. In many practical applications

it will be straight forward to ask the participants directly for their judgments of the

(dis)similarity of objects. Indirect methods, on the other hand, might be well suited

to the investigation of basic perceptual dimensions, or in the case when additional

measures of the objects under study already exist.
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2 How does MDS work?

The goal of an MDS analysis is to find a spatial configuration of objects when all that

is known is some measure of their general (dis)similarity. The spatial configuration

should provide some insight into how the subject(s) evaluate the stimuli in terms

of a (small) number of potentially unknown dimensions. Once the proximities are

derived (cf. section 1) the data collection is concluded, and the MDS solution has

to be determined using a computer program.

Many MDS programs make a distinction between classical and nonmetric MDS.

Classical MDS assumes that the data, the proximity matrix, say, display metric

properties, like distances as measured from a map. Thus, the distances in a classical

MDS space preserve the intervals and ratios between the proximities as good as

possible. For a data matrix consisting of human dissimilarity ratings such a metric

assumption will often be too strong. Nonmetric MDS therefore only assumes that

the order of the proximities is meaningful. The order of the distances in a nonmetric

MDS configuration reflects the order of the proximities as good as possible while

interval and ratio information is of no relevance.

In order to gain a better understanding of the MDS outcome, a brief introduction

to the basic mechanisms of the two MDS procedures, classical und nonmetric MDS,

might be helpful.

2.1 Classical MDS

Consider the following problem: looking at a map showing a number of cities, one

is interested in the distances between them. These distances are easily obtained by

measuring them using a ruler. Apart from that, a mathematical solution is available:

knowing the coordinates x and y, the Euclidean distance between two cities a and

b is defined by

dab =
√

(xa − xb)2 + (ya − yb)2. (1)

Now consider the inverse problem: having only the distances, is it possible to obtain

the map? Classical MDS, which was first introduced by Torgerson (1952), addresses

this problem. It assumes the distances to be Euclidean. Euclidean distances are

usually the first choice for an MDS space. There exist, however, a number of non-
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Euclidean distance measures, which are limited to very specific research questions

(cf. Borg & Groenen, 1997). In many applications of MDS the data are not distances

as measured from a map, but rather proximity data. When applying classical MDS

to proximities it is assumed that the proximities behave like real measured distances.

This might hold e. g. for data that are derived from correlation matrices, but rarely

for direct dissimilarity ratings. The advantage of classical MDS is that it provides

an analytical solution, requiring no iterative procedures.

Steps of a classical MDS algorithm

Classical MDS algorithms typically involve some linear algebra. Readers who are

not familiar with these concepts might as well skip the next paragraph (cf. Borg &

Groenen, 1997, for a more careful introduction).

The classical MDS algorithm rests on the fact that the coordinate matrix X can

be derived by eigenvalue decomposition from the scalar product matrix B = XX′.

The problem of constructing B from the proximity matrix P is solved by multiplying

the squared proximities with the matrix J = I − n−111′. This procedure is called

double centering. The following steps summarize the algorithm of classical MDS:

1. Set up the matrix of squared proximities P(2) = [p2].

2. Apply the double centering: B = −1
2
JP(2)J using the matrix J = I− n−111′,

where n is the number of objects.

3. Extract the m largest positive eigenvalues λ1 . . . λm of B and the corresponding

m eigenvectors e1 . . . em.

4. A m-dimensional spatial configuration of the n objects is derived from the

coordinate matrix X = EmΛ1/2
m , where Em is the matrix of m eigenvectors

and Λm is the diagonal matrix of m eigenvalues of B, respectively.

Example: Cities in Denmark

In order to illustrate classical MDS, assume that we have measured the distances

between København (cph), Århus (aar), Odense (ode) and Aalborg (aal) on a map.
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Therefore, the proximity matrix (showing the distances in millimeters) might look

like
cph aar ode aal

cph 0 93 82 133

aar 93 0 52 60

ode 82 52 0 111

aal 133 60 111 0

.

The matrix of squared proximities is

P(2) =


0 8649 6724 17689

8649 0 2704 3600

6724 2704 0 12321

17689 3600 12321 0

 .
Since there are n = 4 objects, the matrix J is calculated by

J =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−0.25×


1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

 =


0.75 −0.25 −0.25 −0.25

−0.25 0.75 −0.25 −0.25

−0.25 −0.25 0.75 −0.25

−0.25 −0.25 −0.25 0.75

 .
Applying J to P(2) yields the double centered matrix B

B = −1
2
JP(2)J =


5035.0625 −1553.0625 258.9375 −3740.938

−1553.0625 507.8125 5.3125 1039.938

258.9375 5.3125 2206.8125 −2471.062

−3740.9375 1039.9375 −2471.0625 5172.062

 .
For a two-dimensional representation of the four cities, the first two largest eigen-

values and the corresponding eigenvectors of B have to be extracted

λ1 = 9724.168, λ2 = 3160.986, e1 =


−0.637

0.187

−0.253

0.704

 , e2 =


−0.586

0.214

0.706

−0.334

 .

Finally the coordinates of the cities (up to rotations and reflections) are obtained

by multiplying eigenvalues and -vectors

X =


−0.637 −0.586

0.187 0.214

−0.253 0.706

0.704 −0.334


[ √

9724.168 0

0
√

3160.986

]
=


−62.831 −32.97448

18.403 12.02697

−24.960 39.71091

69.388 −18.76340

 .
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Figure 2: Classical MDS representation of the four Danish cities

København (cph), Århus (aar), Odense (ode) and Aalborg (aal).

Figure 2 shows a graphical representation of the MDS solution. Remember that this

“map” is derived only from the distances between the points. Note that the dimen-

sions cannot directly be identified with “North–South” and “East–West” without

further rotation.

2.2 Nonmetric MDS

The assumption that proximities behave like distances might be too restrictive, when

it comes to employing MDS for exploring the perceptual space of human subjects.

In order to overcome this problem, Shepard (1962) and Kruskal (1964a,b) devel-

oped a method known as nonmetric multidimensional scaling. In nonmetric MDS,

only the ordinal information in the proximities is used for constructing the spatial

configuration. A monotonic transformation of the proximities is calculated, which

yields scaled proximities. Optimally scaled proximities are sometimes referred to as

disparities d̂ = f(p). The problem of nonmetric MDS is how to find a configura-

tion of points that minimizes the squared differences between the optimally scaled

proximities and the distances between the points. More formally, let p denote the

vector of proximities (i. e. the upper or lower triangle of the proximity matrix), f(p)

a monotonic transformation of p, and d the point distances; then coordinates have

to be found, that minimize the so-called stress

STRESS =

√∑
(f(p)− d)2∑

d2
. (2)
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MDS programs automatically minimize stress in order to obtain the MDS solution;

there exist, however, many (slightly) different versions of stress.

Judging the goodness of fit

The amount of stress may also be used for judging the goodness of fit of an MDS

solution: a small stress value indicates a good fitting solution, whereas a high value

indicates a bad fit. Kruskal (1964a) provided some guidelines for the interpretation

of the stress value with respect to the goodness of fit of the solution (Table 2).

Stress Goodness of fit

> .20 poor

.10 fair

.05 good

.025 excellent

.00 perfect

Table 2: Stress and goodness of fit.

Caution: These simple guidelines are easily misused. In order to avoid misinter-

pretation, the following should be kept in mind:

• There are many different stress formulae in the MDS literature. The guide-

lines, however, apply only to the stress measure computed by equation (2) –

sometimes referred to as Stress 1.

• Stress decreases as the number of dimensions increases. Thus, a two-dimensional

solution always has more stress than a three-dimensional one.

Since the absolute amount of stress gives only a vague indication of the goodness

of fit, there are two additional techniques commonly used for judging the adequacy

of an MDS solution: the scree plot and the Shepard diagram (cf. Borg & Groenen,

1997; Hair, Anderson, Tatham & Black, 1998).

In a scree plot, the amount of stress is plotted against the number of dimensions.

Since stress decreases monotonically with increasing dimensionality, one is looking

for the lowest number of dimensions with acceptable stress. An “elbow” in the scree

plot indicates, that more dimensions would yield only a minor improvement in terms
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Figure 3: Left panel: Scree plot displaying an elbow at three di-

mensions. Right panel: Shepard diagram with the optimally scaled

proximities.

of stress. Thus, the best fitting MDS model has as many dimensions as the number

of dimensions at the elbow in the scree plot. The Shepard diagram displays the

relationship between the proximities and the distances of the point configuration.

Less spread in this diagram implies a good fit. In nonmetric MDS, the ideal location

for the points in a Shepard diagram is a monotonically increasing line describing

the so-called disparities, the optimally scaled proximities. In an MDS solution that

fits well the points in the scree plot are close to this monotonically increasing line.

Figure 3 shows a paradigmatic scree plot and a Shepard diagram. The elbow in

the scree plot suggests a three-dimensional MDS space, while the little amount of

spread in the Shepard diagram indicates a rather good fit of the solution.

Basics of a nonmetric MDS algorithm

The core of a nonmetric MDS algorithm is a twofold optimization process. First

the optimal monotonic transformation of the proximities has to be found. Secondly,

the points of a configuration have to be optimally arranged, so that their distances

match the scaled proximities as closely as possible. The basic steps in a nonmetric

MDS algorithm are:
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1. Find a random configuration of points, e. g. by sampling from a normal distri-

bution.

2. Calculate the distances d between the points.

3. Find the optimal monotonic transformation of the proximities, in order to

obtain optimally scaled data f(p).

4. Minimize the stress between the optimally scaled data and the distances by

finding a new configuration of points.

5. Compare the stress to some criterion. If the stress is small enough then exit

the algorithm else return to 2.
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3 Sound quality evaluation using MDS

The following section gives an example of an application of different types of MDS

analyses in sound quality research. The data were collected at the Sound Quality

Research Unit (SQRU), Aalborg University, in the summer of 2002 by Christian

Schmid. One goal of the study was to reveal and identify the dimensions that

subjects use in evaluating environmental sounds. A total number of 77 subjects

participated in the experiment. They were presented with all 66 pairs of 12 environ-

mental sounds via headphones. The subjects’ task was to rate the dissimilarity of

each two sounds on a scale from 1 (very similar) to 9 (very dissimilar). The resulting

proximity matrices allow for both an individual and an aggregate analysis.

3.1 Individual analysis

For the individual analysis a nonmetric MDS model was chosen, since it is doubtful

whether there is more than ordinal information in the data. Consider subject 37

as an example. Table 3 displays the proximity matrix, including the dissimilarity

ratings.

With 12 stimuli it is possible to look for a spatial representation in at most three

dimensions (cf. section 4). The scree plot in Figure 4 can help with finding the

sound no. 1 2 3 4 5 6 7 8 9 10 11 12

circular saw 1 0 1 4 5 3 4 2 8 8 5 7 1

dentist’s drill 2 1 0 3 8 2 6 2 7 8 8 7 2

fan 3 4 3 0 7 2 3 3 7 8 6 4 3

hooves 4 5 8 7 0 8 9 3 8 2 2 9 5

howling wind 5 3 2 2 8 0 6 4 8 9 6 4 2

ship’s horn 6 4 6 3 9 6 0 1 3 9 8 5 3

stadium 7 2 2 3 3 4 1 0 4 3 6 7 1

stone in well 8 8 7 7 8 8 3 4 0 9 6 9 5

typewriter 9 8 8 8 2 9 9 3 9 0 4 9 9

tire on gravel 10 5 8 6 2 6 8 6 6 4 0 4 3

wasp 11 7 7 4 9 4 5 7 9 9 4 0 6

waterfall 12 1 2 3 5 2 3 1 5 9 3 6 0

Table 3: Individual proximity matrix of 12 environmental sounds

for subject 37.
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Figure 4: Scree plot and Shepard diagram for the two-dimensional

MDS solution (subject 37).

appropriate number of dimensions. Obviously, a one-dimensional representation is

not adequate (stress > .30). The scree plot does not display a clear elbow, but

the largest improvement in terms of stress occurs when changing from one to two

dimensions. Therefore, a two-dimensional solution was chosen. The stress for the

two-dimensional solution is 0.156. The Shepard diagram displays the goodness of fit

of the two-dimensional solution. The points of a perfectly fitting solution would lie

on the monotonically increasing line. The spread in the Shepard diagram indicates

some deviation from a perfect fit; it was, however, considered small enough to carry

out further analyses.

In Figure 5 the two-dimensional graphical representation of the proximities of

subject 37 is shown. When interpreting such an MDS map one strategy is to look

for groups of objects. The three objects ‘typewriter’, ‘tire on gravel’, and ‘howling

wind’ for example seem to form a group, since they are closer to each other than

to any other sound. Another approach is to take two very distant objects and try

to find an interpretation for the dimensions. The sounds ‘stone in well’ and ‘wasp’

seem to be very different on dimension two, but rather similar on dimension one.

The substantial interpretation of these dimensions, however, is not obvious.
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Figure 5: Individual MDS representation (subject 37) of twelve

environmental sounds: circular saw (cs), dentist’s drill (dd), fan

(fa), hooves (ho), howling wind (hw), ship’s horn (sh), stadium

(st), stone in well (sw), typewriter (ty), tire on gravel (tg), wasp

(wa), waterfall (wf).

3.2 Aggregate analysis

In order to perform an aggregate MDS analysis, the 77 single proximity matrices

were combined by computing the average value for each cell. Again, a nonmetric

MDS model with Euclidean distances was chosen to represent the data. The stress

for a two-dimensional solution amounts to 0.106; the largest improvement in terms

of stress occurs when changing from one to two dimensions. The graphical configu-

ration is displayed in Figure 6.

If there are additional measurements of the stimuli available, it is possible to

search for an empirical interpretation of the dimensions by correlating them with

the external measure. In our case, from another experiment with the same sounds

and largely the same subjects, an unpleasantness scale was derived. I. e. the un-

pleasantness value for each sound is known. Correlating the values on the first

dimension (x-axis) with the unpleasantness scale using Spearman’s rank correlation

yields a statistically significant correlation of % = 0.69. Roughly speaking, half of

the variance along the x-axis in Figure 6 can be explained by the unpleasantness of

the sounds. This finding emphasizes the importance of a psychological measure like

unpleasantness for the perception of environmental sounds.
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Figure 6: Aggregate MDS representation of twelve environmental

sounds for 77 subjects (the labels of the sounds are the same as in

Figure 5).

3.3 Individual difference scaling

Individual difference scaling (INDSCAL), or weighted MDS, was first introduced

by Carrol & Chang (1970). Using this technique, it is possible to represent both

the stimuli in a common MDS space, and the individual differences. In order to

achieve this, the assumption is made that all subjects use the same dimensions

when evaluating the objects, but that they might apply individual weights to these

dimensions. By estimating the individual weights and plotting them (in the case of

a low-dimensional solution) different groups of subjects can be detected. The input

of an INDSCAL analysis are the individual proximity matrices of all subjects.

Figure 7 shows the outcome of the INDSCAL procedure as applied to the twelve

environmental sounds and the sample of 77 participants presented in the previous

section. The MDS map looks similar to the aggregate MDS representation depicted

in Figure 6. The tight clustering of the subjects’ weights in the right panel of

Figure 7 reveals that the sample is rather homogeneous. Only the subjects 31, 36,

55, and 73 in the lower left corner of the figure may be regarded as a separate group;

i. e. these participants put less weight on the two dimensions than the rest of the

sample.
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Figure 7: INDSCAL representation of twelve environmental sounds.

The left panel displays the common two-dimensional MDS space,

the right panel the weights of the two dimensions for each subject.

Conclusion

This section was set out to illustrate different MDS techniques as they might be

employed in sound quality research. As a conclusion of the briefly described ex-

periment it can be stated that (1) the subjects used largely the same dimensions

when evaluating environmental sounds and (2) one of the evaluative dimensions was

highly related to the perceived unpleasantness of the sounds.
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4 Decisions to take before you start

MDS requires a certain amount of expertise on the part of the researcher. Unlike

univariate statistical methods, the outcome of an MDS analysis is more dependent

on the decisions that are taken beforehand. At the data-collection stage one should

be aware that asking for similarity rather than for dissimilarity ratings might affect

the results; i. e. a similarity judgment cannot simply be regarded as the “inverse” of

a dissimilarity judgment. Further, a decision between direct and indirect methods,

and symmetric versus asymmetric methods of data collection, respectively, has to

be taken (cf. section 1).

The way the proximity matrix has been set up might already determine the

choice of an appropriate MDS model. If the proximities are such that the actual

numerical values are of little significance and the rank order is thought to be the

only relevant information, then a nonmetric, rather than a metric, model should

be chosen. Moreover, Euclidean distances are recommended whenever the most

important goal of the analysis is to visualize the structure in the data; non-Euclidean

distances will rather obscure the outcome from visual inspection, but they might be

a valuable tool for investigating specific hypotheses about the subject’s perceptual

space. Finally, the type of stress measure chosen will affect the MDS representation.

Clearly, the number of dimensions of the MDS space will influence the solution

most drastically. A-priori hypotheses might help to choose the appropriate number.

If, for example, the question is whether or not it is possible to represent the objects

by a unidimensional scale, one will be most interested in a one-dimensional MDS

solution. The number of objects to be scaled gives further guidelines (Borg &

Groenen, 1997): a k-dimensional representation requires at least 4k objects, i. e.

a two-dimensional representation requires at least eight objects. A posteriori, the

amount of stress and the number of interpretable dimensions will provide additional

information on how many dimensions to choose.

Another important decision is the type of MDS analysis to be performed. Again

the specific research question might determine the choice. An individual analysis

represents the data of each subject most accurately. But often one is not interested

in the individual differences, but in the perceptual space of an “average” subject.

In this case, the aggregate analysis is more appropriate. INDSCAL provides both
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III. Dimensions
− 1,2,3 or more dimensions
− number of objects

IV. Analysis
− individual analysis
− aggregate analysis
− weighted analysis

V. Software

I. Proximities
− similarities vs. dissimilarities
− direct vs. indirect methods
− symmetric vs. asymmetric data

II. MDS model
− metric vs. nonmetric
− Euclidean vs. non−Euclidean
− type of stress

Figure 8: Diagram of important stages in an MDS analysis. At each

stage a decision has to be taken by the researcher, which influences

both the type of analysis and the outcome (see text for details).
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a common MDS space and a representation of the individual differences. In that

case, however, the assumption is made, that all subjects share a common perceptual

space and differ only in their weights of the dimensions.

Finally, adequate MDS software has to be found that can do the analysis. All

major statistical packages like SPSS, SAS, Statistica, and S-Plus, can perform MDS

analyses. Aside from that stand-alone software exists, specially designed for MDS.

One of the currently most used is ALSCAL by Forrest Young. It is freely available

at http://forrest.psych.unc.edu/research/alscal.html.

However, with the choice of the software, some of the decisions at earlier stages

might be predetermined, e. g. the type of stress measure or the type of analysis.

When buying or using MDS software, one should re-assure that it can perform not

only classical, but also nonmetric MDS. This holds for any of the above-mentioned

software. Figure 8 shows the stages before an MDS analysis and some of the options

the researcher has to choose among.
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5 MDS literature

Multidimensional scaling now belongs to the standard techniques in statistics, even

though it is rarely treated in introductory textbooks. Specific textbooks on multi-

variate data analysis cover topics in greater detail which are only briefly discussed

in this paper. The following three books I found especially useful in gaining a basic

understanding of MDS.

• Borg & Groenen (1997) provide a thorough introduction to multidimensional

scaling. Features of MDS algorithms are outlined by many examples. Recom-

mended to those who want to know more about what the computer programs

actually do.

• An easy to read, application-oriented overview of MDS is given by Hair, An-

derson, Tatham & Black (1998). This book covers many multivariate analysis

techniques from the economist’s point of view. Highly recommended to the

reader with only basic statistical knowledge.

• Further information on the algorithm for individual difference scaling (IND-

SCAL) as well as on the ALSCAL algorithm can be found in Cox & Cox

(1994). The theoretical results are illustrated by several examples.
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